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Introduction 
Any medium for human interaction can be modeled by a network graph, where nodes represent people or computers, 
and an edge signifies a relationship between two entities. However, communication networks such as email and 
phone call networks are characterized by their highly dynamic nature – that Alice and Bob are friends says nothing 
about the frequency or regularity of their communication. Analyzing communication patterns across a network 
should therefore take into account not just the graph structure, but also a wealth of temporal information. In this 
work, we build a model for representing and understanding activity in a communication network, and propose a 
novel approach for identifying anomalous behavior of individuals and groups. Experiments on a variety of real-world 
datasets show the effectiveness and scalability of our approach, as well as a clear and intuitive visual interface. 

Model and Approach 

We propose that to understand communication, inherently a temporal process, it must be studied on the level of 
behavioral patterns between entities over time. Only then can edges be placed within the context of their local graph 
structure or the network as a whole. This enables a more fine-grained analysis that is sensitive to both sudden and 
gradual changes, and provides a sound basis for quantifying the degree of anomaly in subgraphs at any scale. 

We model communication between two entities as a sequence of time-stamped events, signifying the times at which 
communication took place. To analyze these sequences, we appeal to the field of renewal theory. A renewal process 
is a continuous-time Markov process where new events occur with inter-arrival times (IATs) sampled from 
independent and identical distributions (IIDs). 

 
Figure 1.  Distribution of IATs for the five most active edges in the Enron and Twitter datasets on a log-log scale. 

It has been observed that IATs reflecting human interaction frequently exhibit a power-law distribution. This is 
evident in the linearity (on a log-log scale) of the IAT distributions for the Enron email and Twitter message datasets 
(see Figure 1), despite the different time scales. Similar results hold for Bluetooth-connection and IP-traffic datasets. 
The Bounded Pareto Distribution is a common power-law distribution for modeling real-world data. For each edge, 
we learn the parameters of the distribution (xmin, xmax, and shape parameter α) using a Maximum-Likelihood 
Estimation method, which allows us to maintain and update our model in real-time and constant space. 

We now define the recency of an edge. Formally, a recency function Rec : 2T x T → [0,1] assigns a weight to an edge 
e at time t based on the age of its renewal process, i.e., the time since the last event. Specifically, Rec(e) should be 0 
at the time a new event occurs, 1 at time xmax, and uniform over [0,1] when sampled uniformly in time. Given an IAT 
distribution, there is a unique recency function that satisfies these criteria. 
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One problem with describing edges based on the absolute amount of time since the last event is that high-activity 
edges would always appear to be recent, overshadowing any changes in behavior of other edges. We call this 
phenomena time-scale bias. By defining recency to be uniform over [0,1] for all edges, we effectively eliminate 
time-scale bias, thus providing an unbiased quantitative comparison of edges across all activity levels. 

We could stop now and claim that edges with recency score below a fixed threshold are anomalous. A problem with 
this approach, however, is that an edge exhibiting normal behavior (according to the model) is guaranteed to be 
labeled as anomalous a constant fraction of the time, leading to potentially many false positives. Furthermore, we 
have not considered the relationships between different edges in the graph. In fact, we have not made use of any 
properties of the graph structure, which ought to be a central theme of anomaly detection in communication 
networks. In our next step, we consider the collective behavior of a subset of edges. 

Divergence and the MCD Algorithm 
Consider the weighted graph G = (V,E) representing a communication network at a time t, with w(e) = Rec(e,t). For 
E’ ⊆ E and p ∈ [0,1], let XE’,p = |{e ∈ E’ : w(e) ≤ p}|, i.e. the number of edges in E’ with Rec(e,t) ≤ p. We define  
 

the p-divergence of E’ as follows:                                    , where X ~ Bin(|E’|,p). 
 

If our IAT distribution model is accurate and edges are independent, a p-divergence of d means that the probability 
of at least XE’,p edges occurring p-recently is 1/d. A subgraph with high divergence thus indicates significant 
correlation of edges occurring recently. But how do we choose the correct threshold p? Anomalies across different 
edge sets at different times may only be apparent at different thresholds. We address this challenge by introducing 
the concept of max-divergence:  Divmax(E') = max {Divp(E')} over all p ∈ [0,1]. 

To take graph structure into account, we look at sets of edges that form connected components in the graph. We 
define a maximal p-component of G to be a connected subgraph C = (V’,E’) for which the following conditions hold: 
(1) w(e) ≤ p for all e ∈ E’; and (2) w(e) > p for all e ∉ E’ incident to V’. Throughout the paper, component refers to 
a maximal p-component for some p. For convenience, we define the max-divergence of a vertex v ∈ V(G) as 
Divmax(v) = Divmax(E(v)) and the divergence of a p-component C ⊆ G as Div(C) = Divp(E(C)).  

 
Figure 2.  The MCD Algorithm: (a) a recency-weighted graph; (b) components formed at 

various thresholds; (3) the MCD Tree with output highlighted 

We now present the MCD (Maximal Component Divergence) Algorithm (see Figure 2), which identifies multiple 
components of high divergence in a graph. (1) Calculate edge weights using the Recency function. (2) Increase the 
threshold, updating component divergence values as necessary. (3) Output disjoint components with max divergence. 

Let  denote the component of highest divergence in G. The algorithm builds the MCD Tree of all components, 
and returns the following set of disjoint components: , , …, . 

Experimental Results 
We test the effectiveness of our approach using four datasets: (1) Enron – a collection of emails sent between Enron 
employees over 5 years preceding the Enron scandal; (2) Bluetooth – collected by the Reality Mining Lab at MIT, 
showing proximity of Bluetooth devices; (3) LBNL – IP traffic over a 1-hour period, with over 9 million timestamps, 
including hand-labeled scanning activity; and (4) Twitter – messages sent between 250,000 users from 2007-2009.  
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Figure 3.  Reality Mining Bluetooth dataset (a) sorted by degree, and showing (b) recency and (c) MCD analysis 

Figure 3 illustrates how MCD analysis can reveal anomalous activity in a network. This is a key contribution of our 
work: our algorithm can be run as a stand-alone application, or as a tool to assist IT administrators in identifying 
nodes with suspicious behavior. In Figure 4a, a simple plot of MCD over time identifies hand-labeled scanning 
activity, as well as other anomalies overlooked by human analysts. Figure 4b shows the scalability of our algorithm. 

        
Figure 4.  (a) MCD analysis for the LBNL dataset; (b) runtime analysis on the Twitter dataset 

Related Work and Conclusions 
Time-evolving networks has recently become a hot research topic. [1] provides an empirical study of laws governing 
weighted time-evolving graphs. [2] give an overview of change mining. [3] is a recent survey on anomaly detection. 

In [4] and [6] algorithms are presented to identify vertices with anomalous neighborhoods, and [5] develop an 
anomaly detection algorithm to flag times of abnormally high activity. However, these approaches rely on simple 
graph or vertex statistics or expensive local computations, and are subject to time-scale bias. 

Studying inter-arrival times is a novel approach for analyzing communication networks. Our algorithm is streaming 
and runs in O(m) space and O(m log m) time, where m is the number of edges in the dataset. MCD analysis provides 
output that can be easily visualized and used as a tool for monitoring activity in a variety of real-world domains. 
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