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Infectious Disease Models

e R. M. Anderson and R. M. May (1996)
N. T. J. Balley (1975)

e W. O. Kermack and A. G. McKendrick
(1932)

 R. Ross (1911)
e etc




Questions

What are the consequences of the interactions
between density-dependent birth or recruitment
processes and disease-induced mortality In
seasonal environments?

e (L. Allen [1994, 2000], Hwang and Kuang
[2001, 2003], Castillo-Chavez et al [2005],
etc).




4 . .
Demographic Equation (Constant

Environment)

N(t+1) =1(N(t)) +y S(Q)+v.1(t) (1)

whereatgeneratiort,

S(t) = susceptile population

I(t) = infectedpopulation(assumedhfectious;

N(t) =S(t) + I(t) = totalpopulation

f JC([0,00),[0,00) modelsbirth or recruitmemprocess
DiseaselnducedMortality : y = y

Wheny =y =y, then(1) becomes

N(t+1) =1(N(t)) +YN(t) (2)




: Examples Of Recruitment

Functions

1.Constanrecruitmet functior
f(N(t)) =A
2.Geometrigecruitmemnfunction
f(N(t)) = £N(t)
3.Beverton Holt recruitmemnfunction

N(t
f(N(D) = AN

K+ (1 —1)N(t)

4.Rickerrecruitmemnfunction

N©
r(1 ” )

f(IN()) = N(H)e




Demographic Equation In
Seasonal Environments

N({t+2D = f(t,N(t))+ y]IS(t) + y2tl (t)

where
fF+T,N(t)=f(t,N(1)

%ﬂ+T)_%t
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SIS Epidemic Model With Disease-
Induced Death

()
N(t)

(£ +1) = yl[l oa ! (( ’)>j8(t) +y,0 (1)

S(t+1) = 1(N(1)) + ya =) S(t) + ), (1- 0)|(t)

- (3)

whereO<y, <), <1,0<o <landN(t) > 0.

Theescapdunction:[0,») - [0,1] isa
monotoneconvexprobability function with ¢(0) =1
andg< 0.
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Model Assumptions

e Disease increases mortality but does not
affect fecundity;

e No acquired immunity;
e No latent period (or latent period Is very
short);

e Transmission Is frequency dependent rathe
than density dependent.

I



Deterministic SIS Model

e Our model Is a deterministic SIS epidemic
model and has no “probability” of
transmission. The assumption of
deterministic dynamics Is valid in a large
population, where stochasticity Is
unimportant.

e This assumption places a constraint on the
a pllcabgllt¥ of our model. For example,
stochastic transmission (Iln(_:ludln a Poisson
process) In a small population (close to
eXtIé]CI’[IOn) would not be described by our
model.
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Disease Extinction or Persistence
et R = 17¢O)
e O— 1—1/20 )

No diseasenduceddeath: Castillo— ChavezandYakubu[2001]

TheoremFrankeandYakubu,2008).
Let N(0)=1(0) > 0.
1.1f RO <1 thenlim, _I(t) = 0.Thatis, the

diseas@oesxtinct.

2. If RO > landthetotalpopulationis uniformly

persistentthen theeexistsy >0
such thatim, _I(t) =7 > 0.Thatis,
thediseaseas uniformly persistent y




Ro

* Without disease-induced mortality, It Is
known that R>1 implies disease
persistence.

» With disease-induced mortality, iIndepender
of initial population size of healthy
Individuals, a tiny number of infectious

Individuals can drive the total population to
extinction.

—
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Auxiliary Functions

1.D,(N) = f(N)+y,N
Thetotalpopulationof newbirthsandsurvivors;

2F, (1) :yl(l—w(a'ﬁ»(N ~1)+y,0

Infectivepopulationn thenextgeneration
3.G,(I)=FT(N)+y,(N=-1)+p,l
Totalpopulationn thenextgeneration

4. H(N,) =(G,(1),R (1))

Vectorof thetotalandinfectivepopulatiors.




Disease-Free State

If I(t) =0, then thalemographiequation
N(t+1) = f(N() +7,S(0)+7,1()
becomes

S(t+1) =1(S(t)) +v,S(1).

Thisreducedequatiordescribeshediseasefree
statedynamics.




Demographic Basic Reproduction

Number
_1'0 _
Ro _H whenevef(0) = 0.

1.Letf(0) =0.1f R, >1, then theliseasefree
susceptil populationis persistent
2.Letf(0) =0.If R, <1, then{(0,0)} islocally
asymptotially stableThatis, both
thesusceptildandinfectedpopulatiors

goextinctatlow populatiorsizes.
3. Ry isthediseasefreestate

demographabasicreproductbn number.
4.1t eitherf(0) > 0orf(0) =0andR, >1

then theotalpopulationis uniformly persistent

\




Dramatic Population Extinction

TheoremLetR, >1,f(0) = Oandf(N) <f'(O)N
forall N > 0.Then therasafunction
¢ ={(W, V., @a,0,F)>1such thatf 1<R, <¢

then thaotalpopulationgoesextinctunderH iterations




lllustrative Example

aN a

Letf(N) = andg(N)=e N
N) 1+bN aN)

where
0l<a< 02b=1,a=5,),=09,
¥, = 08ando =0.9.

Ry = a >£:1impliesthe
' 1-y, 1-09
persisteneof thesusceptitdpopulationn the

absencef thedisease.

a 0.2

R, =—<

* 1-y, 1-08
As predictecby thetheorem(.1<a<0.177
givestheextinctionof thetotalpopulation
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Multiple Attractors

Theorem Letlimn ..«

() +v.N _,
N

andR, >1.ThenH hasmultiplefixed points

whenG,, "decreasesitlow populationsizes
whileit "increasesat high populationvalues.

Corollary: Letlimy_« fN) +v:N g

If Ry, >1andthereisO< N, with
Gy, (1.Ny) > Ny, then theoriginis
notaglobalattractorandH has

atleast twapositivefixed points.
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Impact of Seasonality

Consider Medel (5) with the Beverton-Holt recruitrment function
alV
tN) = ———
f( 2 ) ].+ thJ
and
el e
] — o
o(5) =¥,
where
011 < a<015 b =12+ (—ljt «01, a=5 ~,=09+ l:—l)t * 0.0
Vs = 084 (-1 %005 and o =023,
p—1
In this example, Rp, = [] (f(£0) + v, ).
+=0

implies the persistence of the sausceptible population in the absence of the disease
(Lemrna (8)), where
Rp, ={a+70)la+92,) <(015+085)(16+075) =09 < 1.

With our cholce of parameters, the disease-free dynarics are governed by the
Beverton-Holt model and the susceptible population persiats.

o

Yot

6 = 2, b =13+ (—1)"*12095, ac[5,300],
= 0.4+ (-1)*«0.02, and & = 0.0002.

Yy, = 045 + (~1)* « 0,03,

I /"

S
Figure 2: Infective population undergoes period-doubling bifurcation route to

chaos as o varies between 5 and 400. On the x — azis, a € [5, 300] and on the
v — awxts, I € ]0,400].

SIS MODEL IN SEASONAL ENVIRONMENTS
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Figure 3:

A chaotic attrator in the (I, N) —space.




Question

What empirical evidences do we have
regarding the potential roles of
seasonal fluctuations in cycling (hos
or pathogen) populations?
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Complex Disease Dynamics

10
al
Letf(N) = Nexp(r- N) and(p(%l) =eN N N
where . ' H’!““ -
025, 1,209.7,0009) = 4ando=00.  |IHIss- P
In theabsencef thediseasethesusceptibé e
populationison agloballyattractingpositive
0.1 0.2 2 03

fixed pointatS, =6.303.




Overcompensatory Dynamics

6 |

10




Fractal Basin Boundaries




Geometric Growth

Letf(N) =uN.In theabsencef thedisease,
thesuceptiblddiseasefreestate)equation
becomes

S(t+1) =uS(t)+7,SM = (1 +7,)S(0).
Hence,

S(t)=(u+7,)'S(0)andR,, =——.
1-vy,




SIS Model With Geometric
Growth

Leti :Landszé.
N N

Theni(t) +s(t)=1andour SISmodelbecomes

- F(I(1)
t+1)= 5
() pty, + (v, —y)IM) ©)




Ro

Undergeometrigyrowth,

R — TY1a(P'(O) .
’ (1_71)(RD1_1)+1_720

TheoremIf R, <1,thenlim,__i(t) =0.
Thatis, theproportionof theinfectedeventually
decrease® zero.

If R, >1,then theroportionof theinfected
populationis uniformly persistent
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Envelopes on Compact Intervals

[Cull, 1986]

Let F:[0,1] - [0,1]havea unique
critical point,i_, andauniquepositive
fixed point,i_, whereO<i_<i_ <1.
Also,let{0} beanunstabldixed point
of F.

A functionE:[0,1] - [0,1]envelopes
thefunctionF if andonlyif

E() = F(i)on[0,i_]and
E()<F@)on[i,,1].
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Globally Stable Positive Fixed
Point

Theoren (Cull[1986]): If EenvelopeFon[0,1]anc
E(E())>iforalliin]i_i,), theni isa
globallyasymptotially stablepositivefixed

pointof Fon(0,1].

TheorenjF-Y, 2008} If R, >1,ourSISepidemianodelwith geomteric
growthhasauniquepositivegloballyasymptotially stableequlibrium




Conclusion

Our model framework allows the population dynanaod
disease transmission to be fairly general.

We highlighted the role of disease-induced mogtalit
seasonality and the complexity of the interactietween
Infectives and susceptible in discrete-time models.

Disease-induced death can force the extinction of a
population with B>1, where the population persists
without disease-induced death.

Disease-induced death can generate multiple aitsaaiith
complicated basin structures.

In epidemic models with disease-induced death, the
disease-free dynamics do not drive the diseasenaigsa

Seasonal environments can generate complex bifoinsat
where none existed In constant environments.




