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DENSITY-DEPENDENT DISCRETE-
TIME

S-I-S EPIDEMIC MODELS



Infectious Disease Models

� R. M. Anderson and R. M. May (1996)
� N. T. J. Bailey (1975)
� W. O. Kermack and A. G. McKendrick

(1932)
� R. Ross (1911)
� etc



Questions

What are the consequences of the interactions 
between density-dependent birth or recruitment 
processes and disease-induced mortality in 
seasonal environments?

� (L. Allen [1994, 2000], Hwang and Kuang 
[2001, 2003],  Castillo-Chavez et al [2005], 
etc). 



Demographic Equation (Constant 
Environment)
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Examples Of Recruitment 
Functions
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Demographic Equation In 
Seasonal Environments
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S-I-S Model



SIS Epidemic Model With Disease-
Induced Death
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Model Assumptions

� Disease increases mortality but does not 
affect fecundity;

� No acquired immunity;
� No latent period (or latent period is very 

short);
� Transmission is frequency dependent rather 

than density dependent.



Deterministic SIS Model
� Our model is a deterministic SIS epidemic 

model and has no “probability” of  
transmission. The assumption of 
deterministic dynamics is valid in a large 
population, where stochasticity is 
unimportant. 

� This assumption places a constraint on the 
applicability of our model.   For example, 
stochastic transmission (including a Poisson 
process) in a small population (close to 
extinction) would not be described by our 
model.



Disease Extinction or Persistence

.persistentuniformly  is disease the
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R0

� Without disease-induced mortality, it is 
known that R0 >1 implies disease 
persistence.

� With disease-induced mortality, independent 
of initial population size of healthy 
individuals, a tiny number of infectious 
individuals can drive the total population to 
extinction.



Auxiliary Functions
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Disease-Free State

dynamics. state

 free-disease  thedescribesequation  reduced This
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Demographic Basic Reproduction 
Number
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Dramatic Population Extinction
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Illustrative Example

.population  total theof extinction  thegives

0.177a0.1  theorem,by the predicted As

.1
8.01

2.0

1
R

 disease.  theof absence

in the population esusceptibl  theof epersistenc

  theimplies 1
9.01

1.0

1
R

0.9. and 8.0

,9.0 5, 1,b ,2.01.0

e(N) and 
bN1

aN
f(N)Let 

2
D

1
D

2

1

N

I
-

2

1

<<

=
−

<
−

=

=
−

>
−

=

==
===<<

=
+

=

γ

γ

σγ
γα

φ
α

a

a

a

where



Multiple Attractors
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Origin an Attractor



Impact of Seasonality



Question

What empirical evidences do we have 
regarding the potential roles of 
seasonal fluctuations in cycling (host 
or pathogen) populations?



Complex Disease Dynamics
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Overcompensatory Dynamics



Fractal Basin Boundaries



Geometric Growth
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SIS Model With Geometric 
Growth
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R0
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Envelopes on Compact Intervals
[Cull, 1986]
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Globally Stable Positive Fixed 
Point

.equlibrium stableally asymptoticglobally  positive unique a hasgrowth 
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Conclusion
� Our model framework allows the population dynamics and 

disease transmission to be fairly general.
� We highlighted the role of disease-induced mortality, 

seasonality and the complexity of the interaction between 
infectives and susceptible in discrete-time models.

� Disease-induced death can force the extinction of a 
population with R0 >1, where the population persists 
without disease-induced death.

� Disease-induced death can generate multiple attractors with 
complicated basin structures.

� In epidemic models with disease-induced death, the 
disease-free dynamics do not drive the disease dynamics.

� Seasonal environments can generate complex bifurcations 
where none existed in constant environments.


