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My Philosophy Towards Combining Evidence

e If information were precise, there would be no issue:
— each additional piece of information would constrain the solution space;

— with enough information the answer would eventually become apparent.

e But almost no information is precise in the inferential sense (except,
perhaps, that coming from a precise theory, and even then the theory
was likely not originally “precise”); thus the real question is how to

combine information involving uncertainties.

e Dominant answer (through 250 years of study, including study of
hundreds of alternatives): probability theory, the instantiation of which

in combining evidence is Bayesian analysis.

e Caveat: computational and real-time processing considerations may

entail utilization of many other techniques.

- /
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Some Issues in Bayesian Combination of
Evidence

e Expert information is easily combined with other information through
prior elicitation, but in many contexts elicitation is difficult or
unwanted (FDA device division); one can then still often use Bayesian

combination of evidence through
— hierarchical modeling;

— objective Bayes.
e Senstivity or Robustness

e Computation, computation, computation

- /
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/ A Medical Diagnosis Example (with Mossman, 2001) \

The Medical Problem:
e Within a population, pg = Pr(Disease D).
e A diagnosic test results in either a Positive (P) or Negative (N) reading.
e p; = Pr(P | patient has D).
e py = Pr(P | patient does not have D).

It follows from Bayes theorem that

PoD1

0 =Pr(D|P)= .
pop1 + (1 — po)p2

The Statistical Problem: The p; € (0,1) are unknown, but three
independent medical studies are reported in the literature, yielding

X; ~ Binomial(n;,p;), 1 = 0,1, 2.

KGoal: find a 100(1 — )% confidence set for 6. /




Statistical Issues in Analyzing Information from Diverse Sources, DIMACS May 6-7, 2010

/Suggested Objective Bayes Solution: \
e Assign p; the Jeffreys-rule prior (Beta(1/2,1/2) distribution)

—1/2 _
m(pi) ocp; (1 —p) M2,
e By Bayes theorem, the posterior distribution of p; given the data, x;, is

O O o s Dl

L4

o721 = pi)—1/2 x ( . )pfi(l — pi)™i % dp;

m(pi | ;) =

which is the Beta(x; + %, ng; — T; + %) distribution;

e the joint posterior distribution of pg, p1, and ps is (by independence)

m(po | wo)m(p1 | x1)7(p2 | 22),

e which determines 7(6 | xg,x1,x2), the posterior distribution of

0 =Pr(D|P)= popy

K pop1 + (1 — po)p2 /
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Computational implementation for determining the confidence

set for 0:

One can simply compute the desired confidence set (formally, the
100(1 — )% equal-tailed posterior credible set) by

1

¢ drawing random p; from the Beta(x; + 5,n; — ; + %) distributions,

i=0,1,2:
e computing the associated 6 = pop1/|[pop1 + (1 — po)p2];
e repeating this process 10,000 times;

e using the 5% upper and lower percentiles of these generated ¢ to form

the desired confidence limits.

- /
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ng =nip = N2

(3707 L1, 372)

95% confidence interval

20
20
80
80

(2,18,2)
(10,18,0)
(20,60,20)
(40,72,8)

(0.107, 0.872)
(0.857, 1.000)
(0.346, 0.658)
(0.808, 0.952)

0= Pr(D | P) =

bopP1

-

popr1+(1—po)p2

Table 1: The 95% equal-tailed posterior credible interval for

, for various values of the n; and x;.
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Consider the frequentist percentage of the time that the 95% Bayesian
credible sets for § = Pr(D | P) = LoP1 miss on the left and on the

pop1+(1—po)p2
right (ideal would be 2.5% each) for the indicated parameter values when

n0:n1:n2:20.

po,P1,P2) | O-Bayes Log Odds Gart-Nam Delta
12 2.86,2.71 1.53,1.55  2.77,2.57  2.68,2.45
1 9 1

1.9 1y 1993247 017,003 158214 0.83,0.41

L9 1y 1981240 004,440 240212 1.25,1.91
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Adjusting for Multiple Testing

San Jose Meveury News

mercurynews.com WESTVALLEY 102

Friday, September 85, 2009

N
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AIDS MILESTONE

New path for HIV vaccine

Some in study protected o 5t T pogess ol
from infection, but trial 4 Thai ond Ame

A Thai and American team an-
I'aises more questions nounced early Thursday in Bang-

kok that they had found a combina-

By Karen Kaplan tion of vaccines providing modest
and Thomas H. Maugh I protection against infection with
Los Angeles Times the virus that causes AIDS, un-

Hours after HIV researchers leashing excitement worldwide. The
announced the achievement of a idea of a vaccine to prevent infec-
milestone that had eluded them for tion with the human immunodefi-
a quarter of a century, reality began ciency virus, HIV, had long heen

frustrating and fruitless.

But by Thursday atternoon, ini-
tial euphoria gave way to a more so-
ber assessment. There is still a very
long way to go hefore reaching the
goal of producing a vaccine that re-
liably shields people from HIV.

Some researchers questioned
whether the apparent 31 percent
reduction in infections was a sta-

See VACCINE, Page 14

Aresearcher
during the Thai
phase [l HIV
Vaccine Trial,
also known as
RV 144, tests the

| “prime-boost”
combination of
two vaccines.

ASSOCIATED PRESS
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Hypotheses and Data:

Q

e Alvac had shown no effect
e Aidsvax had shown no effect

uestion: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the
general (not high-risk) population:

-

e 71 HIV cases reported in the 8198 individuals receiving placebos

e 51 HIV cases reported in the 8197 individuals receiving the treatment

%
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Ghe test that was performed:

e Let p; and py denote the probability of HIV in the placebo and

treatment populations, respectively.
o Test Hy : p1 = py versus Hy : p1 # po

e Normal approximation okay, so

_ p1 — P2 _ .00926 — .00641
\/6-{151 —p2} 00140

is approximately N(6, 1), where 6 = (p1 — p2)/(.00140).
We thus test Hy : 0 =0 versus H; : 0 # 0, based on z.

= 2.04

e Observed z = 2.04, so the p-value is 0.04.
Questions:

e Is the p-value useable as a direct measure of vaccine efficacy?

e Should the fact that there were two previous similar trials be taken

\ into account?

N

/
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Bayesian Analysis of the Single Trial:

Prior distribution:
e Pr(H;) = prior probability that H; is true, ¢ =0, 1,
e On H;:60>0, let w(0) be the prior density for 6.
Note: Hy must be believable (at least approximately) for this to be
reasonable (i.e., no fake nulls).

Subjective Bayes: choose these based on personal beliefs

Objective (or default) Bayes: choose
L P’I“(Ho) :PT(Hl) = %,
e 71(#) = Uniform(0,6.46), which arises from assigning

— uniform for ps on 0 < py < pq,

— plug in for p; .

- /
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Posterior probability of hypotheses:

Pr(Hylz) probability that Hy true, given data z
f(z16 =0) Pr(Ho)

Pr(Ho) f(x|0 = 0) + Pr(Hy) 3~ f(=]6)7(8)d8

For the objective prior, Pr(Hy | z = 1.82) =~ 0.337  (recall, p-value ~ .04)
Posterior density on H; : 6 > 0 is
7(0)z = 1.82, Hy) oc 7(0) £(1.82 | ) = (0.413)e ™ =(1:82-0)
for 0 < 0 < 6.46.

- /
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Robust Bayes: Report the Bayes factor (the odds of Hy to Hy) as a
function of 7 (0) = Uniform(0, C):

Le—(1.82—9)2/2

Boy (C) = likelihood of Hy for observed data o
01 B average likelihood of H; - fc 1 ,—(1.82-0)2/2(—14p
0 Vor
= 8-

Note: ming By1(C) = 0.265 (while By;(6.46) = 0.51).

15
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Incorporation information from multiple tests: To adjust for the two

previous similar failed trials, the (exchangeable) Bayesian solution

e assigns each trial common unknown probability p of success, with p

having a uniform distribution;

e computes the resulting posterior probability that the current trial

exhibits no efficacy

BOl(xl)BOl(xQ)+301(331)—|—B01(5132)—|—3 y 1 )_1
3Bo1(z1)Bo1(z2) + Boi(z1) + Boi(z2) +1  Boi(zs)

where Bgi(z;) is the Bayes factor of “no effect” to “effect” for trial 7.

Pr(Hop | x1,72,x3) = (1 +

The result is Pr(Hg | 1,72, x3) = 0.54.

- %
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/ Combining information from deterministic and \
statistical models: Example - risk from pyroclastic flows

Lxéxi% dsﬁ d E
() fosion
S
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/Plymouth, the former capital of Montserrat \
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We combine use of computer models and statistical models to assess the

risk of a volcanic hazard. We compute

Pr (a catastrophic event occurs in the next T years)

at specified locations, utilizing

e computer implementations of mathematical models of flows to allow

extrapolation to unseen situations;

e statistical models for needed stochastic inputs to the computer model,

appropriate for rare events;

e a computational strategy for rare events, based on development of

adaptive approximations to the computer model.

- %
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The Geophysical /Math Model

e Use ‘thin layer’ modeling ~» system of PDE for the flow depth and the

depth-averaged momenta.

e Main feature: Incorporates topographical data from GIS.

geophysical mass

h=s—h

\
ground z=h{x,y,t)

20
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/ The Computer Model Implementation \
TITAN2D (U Buffalo) computes solution to the math model

e Stochastic inputs whose randomness is the basis of the risk uncertainty:
— x1 = initial volume V' (size of initial flow),
— xo = initial angle ¢ (direction of initial flow).

e r3 = basal friction coefficient b (friction at interface of flow and

ground).

e Other inputs: internal friction,initial velocity (speed and direction) ~»

kept fixed for the moment.

e Output: flow height and depth-averaged velocity at every grid point at
every time step; we will focus on the maximum flow height at each grid

point.

e Each run takes about 1 hour, so that a Gaussian process needs to be

K developed for most of the computations. /
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Figure 1: Median of the emulator, transformed back to the original space. Left:
Plymouth, Right: Bramble Airport. Black points: max-height simulation outputs

at design points.

- /
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Risk Assessment: Probability of Catastrophe

e Use the emulator to determine the critical region X of input values

that would lead to a catastrophe.

e Determine the distribution of the input variables (V, ¢, b) to compute
Pr(at least one (V, p,b) € X in the next ¢ years ).

— The distribution of b is found from auxiliary data concerning
information about pyroclastic flow runouts and runs of TITAN2D

for those flows.

— The distribution of the stochastic inputs (V, ¢, b) is found from field

data, using objective Bayesian analysis.

- /
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It follows that, for any fixed ¢t > 0, the number of catastrophic PF’s (those

with V; > W(p;)) in t years is Poisson with (conditional) mean

N

E(# catastrophic PFs in t yrs | «, )\) = / / e 't (v | @) ———dvdyp
‘1’(90)

= \If
27_‘_ 0 ( ) d@?

Pr(At least one CPF in t yrs | a, A\) =1 — exp [ ;A / U(p)™“ dgp] :
T

P(t)

r(At least one CPF in t yrs | data)

_ 1—//exp[ / T(p) d¢] (e, A | data) do dA.

where (o, A\ | data) is the posterior distribution of («, \) given the data.

/
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Computing the probabilities of catastrophe

To compute Pr(at least one catastrophic event in ¢ years | data) for a

range of £, an importance sampling estimate is
t\; \/I\’(Oéz) 7T*(Oé¢,>\i)
Zi eXp |:_ 27T :| fI (Oéi,>\i)

*(O{Z,A ) Y
Z fI(O%))\ )

P(t)=1-

— where ¥(a) is an MC estimate of fo% U(p)~“dyp based on draws
Yi ™~ Un(oa 27T);

— 7*(a, A) is the un-normalized posterior;

— (ay, ;) are drawn from the importance sampling density
frla, \) =ta(a, A | 1, f], 3), with d.f. 3, mean u* = (@, 5\), and scale
Y = inverse of observed Fisher information matrix.

- %
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Figure 2: P(t) at Plymouth (higher curves) and Airport (lower curves). Solid (dashed)

~» computed with the upper (lower) 75% confidence bands. Reference priors lead to

/
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A Traffic Microsimulator

e CORSIM is a vehicular traffic microsimulator.

e Application: use CORSIM to model a 44-intersection neighborhood in
Chicago.

e Data: Vehicle counts (many inaccurate) from a 1-hour period during

rush hour (9am-10am) on a single day.

e Goal: Solve the ‘inverse problem’ (or parameter estimation problem) of
determining needed inputs for CORSIM from this data.

- /

28




Statistical Issues in Analyzing Information from Diverse Sources, DIMACS May 6-7, 2010

/Needed CORSIM inputs and data \
e Needed CORSIM inputs:

— Demands (N\): 16 Means of exponential inter-arrival time

distributions, at entry points to the network.

— 84 turning probabilities (P).

e Data: Types of counts (C):

— Demands: Observer counts of # vehicles entering network at the 16

entry locations during the hour.

— : Observer counts of # vehicles turning at each

intersection during 20-minute intervals.

— Video Counts: Counts from a video recording of the # vehicles

passing through central intersections.

e Goal: Obtain w(\, P | C), the posterior distribution of the inputs A\, P

given the data. /

29
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Probabilistic Structure and Latent Counts

e Each network link has unobserved latent number of vehicles IV;.

e Observed Demand Counts C; ~ Poisson(b; N;).
Observer bias b; ~ Gamma(a, 8) with 7(a, 8) = 1a<23

True Demand counts N; ~ Poisson();) with 7(\;) oc A;!

e Latent turning counts (N;r, Nir, Nir) ~ MN(N;|P;, Pir, Pir) with
1

(P, Pir, Pir) < (Pip Pir Pir) ™2

e Observed turning counts: independent observations coming from the

same multinomial distribution as the latent counts.
e Network restrictions (27): Ny + Nop = No.(= Nep + Ner + Neg).

e Video restrictions (10): NbHN
C1 = Nar + Nor + Npr.

N
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Problem 1: Reparameterization of the Posterior The 37 linear restrictions
essentially mean that there are 37 extra parameters in the model. Write
the restrictions as

(T (37 by 127) matrix of {-1,0,1} coefficients

'N=A|¢ N: (127 by 1) matrix of parameters

| A: (37 by 1) matrix of known coefficients (video or zeros)

To reparameterize,

e find a singular (37 by 37) I'* and (37 by 90) B (with corresponding
partitions N7 and Ny of N) such that
F*Nl + BN2 = A )

e replace Ny in the likelihood with | N = (I'*)~'A — (I'*)"!BN, |.

Computation of I'* is a fast and easy preprocessing step.

Existence of (at least one) I'* is guaranteed by the nontriviality of the

restrictions.

/
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Problem 2: Iteration-dependent support of the N; Cheaply finding the
exact support of each of the 90 remaining [V, is crucial for efficient MCMC.

To compute the support

e note that nonnegativity of counts = nonnegativity of each multinomial

factorial argument in the likelihood:

(f1(N_;,C)4a1N;)! fo(P)Ni
(f2(N-i,C)+aaNi)! (fs(N-i,C)+azNi)! (fa(N-i,C)—asNi)! (f5(N-i,C)—asNi)!’

where f1, fo, f3 (+ sign) can be negative, and fy4, f5 (- sign) are

non-negative;

e also, G.L.B.= -min(0, 2 fl L2 sy T, UB.= +min(L, L),

> a2’ asg as’ as
with the existence of Support in the previous iteration guaranteeing

that L.U.B. > G.L.B:

e which together imply N; € [mm(O L2 fg) ‘|‘m1n(f4 = )]

‘a1 ? a2’ as as’ as

- /
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Problem 3: MCMC starting values for the latent counts

-

N

e A starting value of the 90-dimensional N must satisfy I'N = A, N > 0,

and all N’s are integer-valued.

e Since the demand inputs to the network are unknown, this is actually

easy to ensure for our case.

e Indeed, a simple algorithm can be created which provides a satistactory

starting value for any set of data.

/

34



Statistical Issues in Analyzing Information from Diverse Sources, DIMACS May 6-7, 2010

/ N_{E,20} \

o
o
o0 N~
o
o o
2 0 3
o » o
q. | -
S 3 S 3
5 O S
S
300 400 500 600 700 0 2000 4000 6000 800010000
cars iteration/20
N _{F,15}
o
o o e,
o O
S S
> O <
= 8 S
| o N
3 9 © 9
5 O S
o o
(o0}
g | oo A e gL < - - -
60 80 100 120 140 160 0 2000 4000 6000 800010000
cars iteration/20
\\ Posterior distributions of two of the latent demands. /

35



Statistical Issues in Analyzing Information from Diverse Sources, DIMACS May 6-7, 2010

4 N

Final Comments

e Bayesian combination of evidence (of all types) is conceptually

straightforward.

e It is often done through hierarchical modeling and utilization of

objective Bayesian methods.

e Subjective Bayesian analysis is a crucial addition if one wishes to

incorporate expert opinion.

e Computational issues can require the need of many types of

approximation.
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Thanks!

N
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