Bayesian UQ for subsurface inversion using multiscale hierarchical model

Bani Mallick, Yalchin Efendiev, Akhil Datta-Gupta, Anirban Mondal

bmallick@stat.tamu.edu

Department of Statistics, Texas A&M University, College Station

Bayesian analysis and UQ

Goal is to estimate:

- Model parameters and their uncertainties.
- Predictive uncertainty distribution for future responses.

Bayesian approach to analysis:

- Focus is on uncertainties in parameters, as much as on their best (estimated) value.
- Permits use of prior knowledge, e.g., previous experiments, modeling expertise, physics constraints.
- Model-based.
- Can add data sequentially

Data Integration

- Bayesian hierarchical models are natural tools for combining information from diverse sources
- Data at different scales and spatially correlated: reservoir data
- Data from different studies and borrow information across both subjects and studies
- Data could be from cross-platform
- Gene expression data: Depending on the technology the expression data it can be continuous (microarray) or discrete (SAGE, MPSS)

Forward Model and Inverse problem

$$Z = F(\tau) + \epsilon$$

where

- F is the forward model, simulator, computer code which is non-linear and expensive to run.
- ightharpoonup input parameter: could be of very high dimension.
- ullet Z is the observed response.
- $m{\bullet}$ is the random error usually assumed to be Gaussian.
- Want to estimate τ with UQ.
- This is a non-linear inverse problem.

Fluid flow in porous media

- Studying flow of liquids (Ground water, oil) in aquifer (reservoir).
- Applications: Contaminant cleanup, Oil production.
- Forward Model:Flow of liquid (or production data, output) when the physical characteristics (permeability, porosity) are known.
- Inverse problem: Inferring the permeability (porosity) from flow data.

Permeability

- Primary parameter of interest is the permeability field.
- Permeability is a measure of how easily liquid flows through the aquifer at that point.
- This permeability values vary over space.

Darcy's law:

$$v_j = -\frac{k_{rj}(S)}{\mu_j} k_f \nabla p, \tag{1}$$

- v_j is the phase velocity
- ullet k_f is the fine-scale permeability field
- k_{rj} is the relative permeability to phase j (j=oil or water)
- ullet S is the water saturation (volume fraction)
- ightharpoonup p is the pressure.

Combining Darcy's law with a statement of conservation of mass allows us to express the governing equations in terms of pressure and saturation equations:

$$\nabla \cdot (\lambda(S)k_f \nabla p) = Q_s, \tag{2}$$

$$\frac{\partial S}{\partial t} + v \cdot \nabla f(S) = 0, \tag{3}$$

- $m{\flat}$ λ is the total mobility
- Q_s is a source term
- f is the fractional flux of water
- $m{\rlap/}$ v is the total velocity

Production (amount of oil in the produced fluid, fractional Flow or water-cut) $F(k_f)$ is given by

$$F(k_f) = \int_{\partial \Omega^{out}} v_n f(S) dl$$

where $\partial \Omega^{out}$ is outflow boundaries and v_n is normal velocity field.

Inverse Problem

$$Z = F(k_f) + \epsilon$$

- ightharpoonup Z is the observed production data.
- F is the forward simulator which is the solution of a coupled nonlinear pde's.
- \bullet k_f is the fine-scale permeability field of high dimension.
- \bullet is the random error.

- We want to infer k_f conditioned on Z (history matching)
- Some observed fine-scale permeability values (k_f^0) are available but expensive (well logs, cores)
- Additional data: coarse-scale permeability data (k_c) from seismic traces
- We want to model the fine scale permeability field condition on the observe fine scale data, coarse scale data and the production data.

Fine-grid

No flow

$$\phi = 1 \qquad div(k_f(x)\Delta\phi) = 0 \qquad \phi = 0$$

No flow

$$(k_c(x)e_j, e_l) = \frac{1}{|K|} \int_K (k_f(x)\Delta\phi_j(x), e_l) dx$$

Bayesian Framework

- Number of parameters in the permeability field is large relative to the number of available data points.
- Dimension reduction:Replacing k_f by a finite set of parameters τ .
- Building enough structures through models and priors.
- Need to link data at different scales.
- Bayesian hierarchical models have the ability to do all these things simultaneously.

Bayesian Framework

Bayesian model: Joint probability specification on Data: Z and unknown τ through $P(Z,\tau)$.

The convenient way to express it:

$$P(Z,\tau) = P(Z|\tau)P(\tau)$$

- $P(\tau)$: Prior density of τ .Ex: Non-informative prior, Priors based on physical principles (positivity, invariance arguments), Priors based on previous experiments, Prior from expert opinions.
- **●** $P(Z|\tau)$: Likelihood function: Conditional density of $Z|\tau$: Gaussian model is popular one. Heavy tailed distributions to accommodate outliers. In our model distribution of ϵ controls it.

Likelihood calculations

$$Z = F(\tau) + \epsilon$$

For Gaussian model the likelihood will be

$$P(Z|\tau) = \frac{1}{\sqrt{2\pi\sigma_1}} Exp(\frac{-[Z - F(\tau)]^2}{2\sigma_1^2})$$

where σ_1^2 is the variance of ϵ .

Likelihood Calculations

- It is like a black-box likelihood which we can't write analytically, although we do have a code F that will compute it.
- We need to run F to compute the likelihood which is expensive.
- Hence, no hope of having any conjugacy in the model, other than for the error variance in the likelihood.
- Need to be somewhat intelligent about the update steps during MCMC so that do not spend too much time computing likelihoods for poor candidates.

Posterior Density

Posterior density of τ : $P(\tau|Z)$ [Uncertainty of τ after observing the data Z]

$$P(\tau|Z) = \frac{P(\tau)P(Z|\tau)}{P(Z)}.$$

- Posterior Density provides the uncertainty distribution of the unknown parameters.
- Provides complete quantitative description of uncertainties.

Prediction and MCMC

$$P(Z_{new}|Z_{obs}) = \int_{\tau} P(Z_{new}|Z_{obs}, \tau) P(\tau|Z_{obs}) d\tau$$

- For complex, nonlinear models, posterior will be not in explicit form.
- Simulate samples of the parameters from the posterior distribution rather than explicit solution.
- These samples will be utilized to construct the posterior uncertainty distribution of the parameters.
- High dimensional parameter space, hence we use Markov chain Monte Carlo method (MCMC).
- These samples can be used to perform Monte Carlo integration to obtain the predictive distribution.

Procedures

- Reduce the dimension of the permeability field.
- Use the reduced dimension parameters as input parameters τ .
- Use MCMC to draw samples from $P(\tau|Z)$.
- Avoid repeated calculations of the expensive likelihood using two stage MCMC.

Dimension reduction

- ullet We need to reduce the dimension of the permeability field K_f
- This is a spatial field denoted by $K_f(\boldsymbol{x},\omega)$ where \boldsymbol{x} is for the spatial locations and ω denotes the randomness in the process
- Assuming K_f to be a real-valued random field with finite second moments we can represent it by Kauren-Loeve (K-L) expansion

K-L expansion

$$K_f(\boldsymbol{x},\omega) = \theta_0 + \sum_{l=1}^{\infty} \sqrt{\lambda_l} \theta_l(\omega) \phi_l(\boldsymbol{x})$$

where

- λ : eigen values
- $\phi(\boldsymbol{x})$ eigen functions
- \bullet : uncorrelated with zero mean and unit variance
- If K_f is Gaussian process then θ will be Gaussian

K-L expansion

If the covariance kernel is C then we obtain them by solving

$$\int C(\boldsymbol{x}_1, \boldsymbol{x}_2) \phi_l(\boldsymbol{x}_2) d\boldsymbol{x}_2 = \lambda_l \phi_l(\boldsymbol{x}_1)$$

and can express C as

$$C(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sum_{l=1}^{\infty} \lambda_l \phi_l(\boldsymbol{x}_1) \phi_l(\boldsymbol{x}_2)$$

Spatial covariance

We assume the correlation structure

$$C(\mathbf{x}, \mathbf{y}) = \sigma^2 \exp\left(-\frac{|x_1 - y_1|^2}{2l_1^2} - \frac{|x_2 - y_2|^2}{2l_2^2}\right).$$

where, l_1 and l_2 are correlation lengths. For an m-term KLE approximation

$$K_f^m = heta_0 + \sum_{i=1}^m \sqrt{\lambda_i} heta_i \Phi_i,$$
 $= B(l_1, l_2, \sigma^2) heta,$ (say)

(1)

Existing methods

The energy ratio of the approximation is given by

$$e(m) := \frac{E\|k_f^m\|^2}{E\|k_f\|^2} = \frac{\sum_{i=1}^m \lambda_i}{\sum_{i=1}^\infty \lambda_i}.$$

- Assume correlation length l_1 , l_2 and σ^2 are known.
- We treat all of them as model parameters, hence $\tau = (\theta, \sigma^2, l_1, l_2, m)$.

Inverse Problem

- ullet We want to infer k_f conditioned on Z.
- ullet Additional data: coarse-scale permeability field k_c .
- Some of the observed fine-scale permeability values k_f^o , at the well locations.

Hierarchical Bayes' model

$$P(\theta, l_1, l_2, \sigma^2 | Z, k_c, k_f^o) \propto P(z | \theta, l_1, l_2, \sigma^2) P(k_c | \theta, l_1, l_2, \sigma^2)$$

 $P(k_f^o | \theta, l_1, l_2, \sigma^2) P(\theta) P(l_1, l_2) P(\sigma^2)$

- $P(z|\theta, l_1, l_2, \sigma^2)$: Likelihood
- $P(k_c|\theta,l_1,l_2,\sigma^2)$: Upscale model linking fine and coarse scales
- $P(k_f^o|\theta, l_1, l_2, \sigma^2)$: Observed fine scale model
- $P(\theta)P(l_1,l_2)P(\sigma^2)$: Priors

Likelihood

The likelihood can be written as follows:

$$Z = F[B(l_1, l_2, \sigma^2)\theta] + \epsilon_f$$
$$= F_1(\theta, l_1, l_2, \sigma^2) + \epsilon_f$$

where, $\epsilon_f \sim MVN(0, \sigma_f^2 I)$.

Coarse model and upscaling

- Upscaling technique to obtain the coarse models from the fine model.
- For coarsening the fine-scale permeability field we use single-phase flow upscaling procedure for two-phase flow in heterogeneous porous media.
- The main idea of this approach is to upscale the absolute permeability field k on the coarse-grid, then solve the original system on the coarse-grid with upscaled permeability field.
- The calculation of a coarse-scale permeability is that it delivers the same average response as that of the underlying fine-scale problem locally.

Fine-grid

No flow

$$\phi = 1 \qquad div(k_f(x)\Delta\phi) = 0 \qquad \phi = 0$$

No flow

$$(k_c(x)e_j, e_l) = \frac{1}{|K|} \int_K (k_f(x)\Delta\phi_j(x), e_l) dx$$

Upscale model

The Coarse-scale model can be written as follows.

$$k_c = L_1(k_f) + \epsilon_c$$
$$= L_1(\theta, l_1, l_2, \sigma^2) + \epsilon_c$$

where, $\epsilon_c \sim MVN(0, \sigma_c^2 I)$. i.e $k_c | \theta, l_1, l_2, \sigma^2, \sigma_c^2 \sim MVN(L_1(\theta, l_1, l_2, \sigma^2), \sigma_c^2 I)$.

Observed fine scale model

We assume the model $k_f^o = k_p^o + \epsilon_k$

where, $\epsilon_k \sim MVN(0, \sigma_k^2)$.

 k_p^o is the permeability-field obtained from K-L the expansion at the observed well locations.

So here we assume, $k_f^o|\theta, l_1, l_2, \sigma^2, \sigma_k^2 \sim MVN(k_p^o, \sigma_k^2)$,

Inverse problem

- We can show that the posterior measure is Lipschitz continuous with respect to the data in the total variation distance
- It guaranties that this Bayesian inverse problem is well-posed
- \blacksquare Say, y is the total dataset, i.e, $y=\left(\begin{array}{c} z\\ k_c\\ k_f^0 \end{array}\right)$
- $g(\tau,y)$ is the likelihood and $\pi_0(\tau)$ is the prior

Inverse problem

Theorem 0.1. $\forall r > 0, \ \exists \ C = C(r)$ such that the posterior measures π_1 and π_2 for two different data sets y_1 and y_2 with $max(\|y_1\|_{l^2}, \|y_2\|_{l^2}) \leq r$, satisfy

$$\|\pi_1 - \pi_2\|_{TV} \le C\|y_1 - y_2\|_{l_2},$$

MCMC computation

- Metropolis-Hastings (M-H) Algorithm to generate the parameters.
- Reversible jump M-H algorithm when the dimension m of the K-L expansion is treated as model unknown.
- Two step MCMC or Langevin can accelerate our computation.

Two stage Metropolis

UM PSAAP Site Visit

Numerical Results

- In our first example we have considered only the isotropic case, i.e we take $l_1 = l_2 = l$, (say)
- We consider a 50×50 fine-scale permeability field on unit square.
- We generate 15 fine-scale permeability field with $l=.25, \, \sigma^2=1$ and the reference permeability field is taken to be the average of these 15 permeability field.
- The observed coarse-scale permeability field is calculated using the upscaling procedure in a 5×5 coarse grid.
- First, we analyzed when 10% fine-scale data are observed with the coarse scale data

10 percent fine-scale data observed and no coarse-scale data available

25 percent fine-scale data observed and no coarse-scale data available

Numerical results with unknown K-L terms

- We generate 15 fine-scale permeability field with l=.3, $\sigma^2=.2$ and the reference permeability field is taken to be the average of these 15 permeability field.
- We take the first 20 terms in the K-L expansion while generating the reference field.
- The mode of the posterior distribution of m comes out to be 19.
- The posterior mean of fine-scale permeability field resembles very close to the reference permeability field.
- The posterior density of l is bimodal but the highest peak is near.3.
- The posterior density σ^2 are centered around .2.

Numerical Results using Reversible Jump MCMC

Numerical Results using Reversible Jump MCMC

Numerical Results using Reversible Jump MCMC

Conclusion and future work

- Our hierarchical model is very flexible.
- If the coarse-scale data is available (even if in a very large coarse grid) our hierarchical model can efficiently quantify and reduce the uncertainty in the parameters that defines the permeability field.
- If the coarse-scale data is not available, our hierarchical model still works but then at least 25 percent of the data in fine-scale should be known.

