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Bayesian analysis and UQ
Goal is to estimate:

Model parameters and their uncertainties .

Predictive uncertainty distribution for future responses.

Bayesian approach to analysis:

Focus is on uncertainties in parameters, as much as on
their best (estimated) value.

Permits use of prior knowledge, e.g., previous
experiments, modeling expertise, physics constraints.

Model-based.

Can add data sequentially
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Data Integration
Bayesian hierarchical models are natural tools for
combining information from diverse sources

Data at different scales and spatially correlated:
reservoir data

Data from different studies and borrow information
across both subjects and studies

Data could be from cross-platform

Gene expression data: Depending on the technology
the expression data it can be continuous (microarray) or
discrete (SAGE, MPSS)
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Forward Model and Inverse problem

Z = F (τ) + ǫ

where

F is the forward model, simulator, computer code which
is non-linear and expensive to run.

τ input parameter: could be of very high dimension.

Z is the observed response.

ǫ is the random error usually assumed to be Gaussian.

Want to estimate τ with UQ.

This is a non-linear inverse problem.
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Fluid flow in porous media
Studying flow of liquids (Ground water, oil) in aquifer
(reservoir).

Applications: Contaminant cleanup, Oil production.

Forward Model:Flow of liquid (or production data,
output) when the physical characteristics (permeability,
porosity) are known.

Inverse problem: Inferring the permeability (porosity)
from flow data.
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Permeability
Primary parameter of interest is the permeability field.

Permeability is a measure of how easily liquid flows
through the aquifer at that point.

This permeability values vary over space.

5/39



Forward Model
Darcy’s law:

vj = −krj(S)

µj
kf∇p, (1)

vj is the phase velocity

kf is the fine-scale permeability field

krj is the relative permeability to phase j (j=oil or water)

S is the water saturation (volume fraction)

p is the pressure.
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Forward Model
Combining Darcy’s law with a statement of conservation of
mass allows us to express the governing equations in terms
of pressure and saturation equations:

∇ · (λ(S)kf∇p) = Qs, (2)

∂S

∂t
+ v · ∇f(S) = 0, (3)

λ is the total mobility

Qs is a source term

f is the fractional flux of water

v is the total velocity

. 2/3



Forward Model
Production (amount of oil in the produced fluid, fractional
Flow or water-cut) F (kf ) is given by

F (kf ) =

∫

∂Ωout

vnf(S)dl

where ∂Ωout is outflow boundaries and vn is normal velocity

field.
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Inverse Problem
Z = F (kf ) + ǫ

Z is the observed production data.

F is the forward simulator which is the solution of a
coupled nonlinear pde’s.

kf is the fine-scale permeability field of high dimension.

ǫ is the random error.
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Forward Model
We want to infer kf conditioned on Z (history matching)

Some observed fine-scale permeability values (k0
f ) are

available but expensive (well logs, cores)

Additional data: coarse-scale permeability data (kc)
from seismic traces

We want to model the fine scale permeability field
condition on the observe fine scale data, coarse scale
data and the production data.
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Bayesian Framework
Number of parameters in the permeability field is large
relative to the number of available data points.

Dimension reduction:Replacing kf by a finite set of
parameters τ .

Building enough structures through models and priors.

Need to link data at different scales.

Bayesian hierarchical models have the ability to do all
these things simultaneously.
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Bayesian Framework
Bayesian model: Joint probability specification on Data: Z
and unknown τ through P (Z, τ).
The convenient way to express it:

P (Z, τ) = P (Z|τ)P (τ)

P (τ): Prior density of τ .Ex: Non-informative prior, Priors
based on physical principles (positivity, invariance
arguments), Priors based on previous experiments,
Prior from expert opinions.

P (Z|τ): Likelihood function: Conditional density of Z|τ :
Gaussian model is popular one. Heavy tailed
distributions to accommodate outliers. In our model
distribution of ǫ controls it.

9/39



Likelihood calculations

Z = F (τ) + ǫ

For Gaussian model the likelihood will be

P (Z|τ) =
1√

2πσ1

Exp(
−[Z − F (τ)]2

2σ2
1

)

where σ2
1 is the variance of ǫ.
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Likelihood Calculations
It is like a black-box likelihood which we can’t write
analytically, although we do have a code F that will
compute it.

We need to run F to compute the likelihood which is
expensive.

Hence, no hope of having any conjugacy in the model,
other than for the error variance in the likelihood.

Need to be somewhat intelligent about the update steps
during MCMC so that do not spend too much time
computing likelihoods for poor candidates.
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Posterior Density
Posterior density of τ : P (τ |Z) [Uncertainty of τ after
observing the data Z]

P (τ |Z) =
P (τ)P (Z|τ)

P (Z)
.

Posterior Density provides the uncertainty distribution of
the unknown parameters.

Provides complete quantitative description of
uncertainties.
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Prediction and MCMC

P (Znew|Zobs) =

∫

τ
P (Znew|Zobs, τ)P (τ |Zobs)dτ

For complex, nonlinear models, posterior will be not in
explicit form.

Simulate samples of the parameters from the posterior
distribution rather than explicit solution.

These samples will be utilized to construct the posterior
uncertainty distribution of the parameters.

High dimensional parameter space, hence we use
Markov chain Monte Carlo method (MCMC).

These samples can be used to perform Monte Carlo
integration to obtain the predictive distribution.
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Procedures
Reduce the dimension of the permeability field.

Use the reduced dimension parameters as input
parameters τ .

Use MCMC to draw samples from P (τ |Z).

Avoid repeated calculations of the expensive likelihood
using two stage MCMC.
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Dimension reduction
We need to reduce the dimension of the permeability
field Kf

This is a spatial field denoted by Kf (x, ω) where x is for
the spatial locations and ω denotes the randomness in
the process

Assuming Kf to be a real-valued random field with finite
second moments we can represent it by Kauren-Loeve
(K-L) expansion
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K-L expansion

Kf (x, ω) = θ0 +
∞

∑

l=1

√

λlθl(ω)φl(x)

where

λ: eigen values

φ(x) eigen functions

θ: uncorrelated with zero mean and unit variance

If Kf is Gaussian process then θ will be Gaussian
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K-L expansion
If the covariance kernel is C then we obtain them by solving

∫

C(x1,x2)φl(x2)dx2 = λlφl(x1)

and can express C as

C(x1,x2) =
∞

∑

l=1

λlφl(x1)φl(x2)
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Spatial covariance
We assume the correlation structure

C(x,y) = σ2 exp
(

− |x1−y1|
2

2l2
1

− |x2−y2|
2

2l2
2

)

.

where, l1 and l2 are correlation lengths.
For an m-term KLE approximation

Km
f = θ0 +

m
∑

i=1

√

λiθiΦi,

= B(l1, l2, σ
2)θ, (say)

(1)
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Existing methods
The energy ratio of the approximation is given by

e(m) :=
E‖km

f ‖2

E‖kf‖2 =
Pm

i=1
λi

P

∞

i=1
λi

.

Assume correlation length l1, l2 and σ2 are known.

We treat all of them as model parameters, hence
τ = (θ, σ2, l1, l2,m).
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Inverse Problem
We want to infer kf conditioned on Z.

Additional data: coarse-scale permeability field kc.

Some of the observed fine-scale permeability values ko
f ,

at the well locations.
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Hierarchical Bayes’ model

P (θ, l1, l2, σ
2|Z, kc, k

o
f ) ∝ P (z|θ, l1, l2, σ2)P (kc|θ, l1, l2, σ2)

P (ko
f |θ, l1, l2, σ2)P (θ)P (l1, l2)P (σ2)

P (z|θ, l1, l2, σ2): Likelihood

P (kc|θ, l1, l2, σ2): Upscale model linking fine and coarse
scales

P (ko
f |θ, l1, l2, σ2): Observed fine scale model

P (θ)P (l1, l2)P (σ2): Priors
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Likelihood
The likelihood can be written as follows:

Z = F [B(l1, l2, σ
2)θ] + ǫf

= F1(θ, l1, l2, σ
2) + ǫf

where, ǫf ∼ MV N(0, σ2
fI).
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Coarse model and upscaling
Upscaling technique to obtain the coarse models from
the fine model.

For coarsening the fine-scale permeability field we use
single-phase flow upscaling procedure for two-phase
flow in heterogeneous porous media.

The main idea of this approach is to upscale the
absolute permeability field k on the coarse-grid, then
solve the original system on the coarse-grid with
upscaled permeability field.

The calculation of a coarse-scale permeability is that it
delivers the same average response as that of the
underlying fine-scale problem locally.
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Upscale model
The Coarse-scale model can be written as follows.

kc = L1(kf ) + ǫc

= L1(θ, l1, l2, σ
2) + ǫc

where, ǫc ∼ MV N(0, σ2
c I).

i.e kc|θ, l1, l2, σ2, σ2
c ∼ MV N(L1(θ, l1, l2, σ

2), σ2
c I).
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Observed fine scale model
We assume the model ko

f = ko
p + ǫk

where, ǫk ∼ MV N(0, σ2
k).

ko
p is the permeability-field obtained from K-L the expansion

at the observed well locations.
So here we assume, ko

f |θ, l1, l2, σ2, σ2
k ∼ MV N(ko

p, σ
2
k),
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Inverse problem
We can show that the posterior measure is Lipschitz
continuous with respect to the data in the total variation
distance

It guaranties that this Bayesian inverse problem is
well-posed

Say, y is the total dataset, i.e, y =







z

kc

k0
f







g(τ, y) is the likelihood and π0(τ) is the prior
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Inverse problem
Theorem 0.1. ∀ r > 0, ∃ C = C(r) such that the posterior measures
π1 and π2 for two different data sets y1 and y2 with
max (‖y1‖l2 , ‖y2‖l2) ≤ r, satisfy

‖π1 − π2‖TV ≤ C‖y1 − y2‖l2 ,
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MCMC computation
Metropolis-Hastings (M-H) Algorithm to generate the
parameters.

Reversible jump M-H algorithm when the dimension m
of the K-L expansion is treated as model unknown.

Two step MCMC or Langevin can accelerate our
computation.
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• Two stage Metropolis

UM PSAAP Site Visit

Propose new 

θ
Start with θ0

Use upscale 

model
Use original 

code

Reject new θ

Replace θ0 by 

θ

Accept 

new θ

Reject θ

Accept θ

Return

Return



Numerical Results
In our first example we have considered only the
isotropic case, i.e we take l1 = l2 = l, (say)

We consider a 50× 50 fine-scale permeability field on
unit square.

We generate 15 fine-scale permeability field with
l = .25, σ2 = 1 and the reference permeability field is
taken to be the average of these 15 permeability field.

The observed coarse-scale permeability field is
calculated using the upscaling procedure in a 5× 5
coarse grid.

First, we analyzed when 10% fine-scale data are
observed with the coarse scale data
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10 percent fine-scale data observed and no coarse-scale data available
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25 percent fine-scale data observed and no coarse-scale data available
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Numerical results with unknown K-L terms

We generate 15 fine-scale permeability field with l = .3,
σ2 = .2 and the reference permeability field is taken to
be the average of these 15 permeability field.

We take the first 20 terms in the K-L expansion while
generating the reference field.

The mode of the posterior distribution of m comes out
to be 19.

The posterior mean of fine-scale permeability field
resembles very close to the reference permeability field.

The posterior density of l is bimodal but the highest
peak is near.3.

The posterior density σ2 are centered around .2.
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Numerical Results using Reversible Jump MCMC
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Numerical Results using Reversible Jump MCMC
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Numerical Results using Reversible Jump MCMC
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Conclusion and future work
Our hierarchical model is very flexible.

If the coarse-scale data is available (even if in a very
large coarse grid) our hierarchical model can efficiently
quantify and reduce the uncertainty in the parameters
that defines the permeability field.

If the coarse-scale data is not available, our hierarchical
model still works but then at least 25 percent of the data
in fine-scale should be known.
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