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Outline of the Talk

• Representation of Positive Functions
• The Product Formula
• Coefficients in the product representation and 

statistical properties
• Some background from Analysis, Geometry, and 

Mathematical Physics
• Visual Displays
• Several Sources
• Diffusion Geometry
• Preprocessing Tools



SLE Price Chart and “Bursty” Volume from May, 2009

How would we best represent the 
volume?



Some Haar-like functions
“The Theory of Weights and the Dirichlet Problem for Elliptic 

Equations” by R. Fefferman, C. Kenig, and J.Pipher (Annals of 
Math., 1991). We first define the “L∞ normalized Haar function” hI
for an interval I of form [j2-n,(j+1)2-n] to be of form

hI = +1 on [j2-n,(j+1/2)2-n)    
and  

hI =  -1 on [(j+1/2)2-n,(j+1)2-n).

The only exception to this rule is if the right hand endpoint of I is 1. 
Then we define

hI (1) = -1.



The Product Formula
• Theorem (F,K,P): A Borel probability measure μ on [0,1] 

has a unique representation as
∏(1 +  aI hI) , 

where the coefficients aI are∈ [-1,+1]. Conversely, if we 
choose any sequence of coefficients aI ∈ [-1,+1], the 
resulting product is a Borel probability measure on [0,1]. 

Note: For general positive measures, just multiply by a 
constant. Similar result on [0,1]d.

Note: See “The Theory of Weights and the Dirichlet Problem for Elliptic Equations” by R. 
Fefferman, C. Kenig, and J.Pipher (Annals of Math., 1991)



Relative “Volume”

The coefficients aI are computed simply by 
computing  relative measure (“volume”) on the 
two halves of each interval I. Let L and R = 
left (resp. right) halves of I. Solve:

μ(L)  = ½ (1 +  aI) μ(I)
μ(R)  = ½ (1  - aI) μ(I)

Then -1 ≤ aI ≤ +1 because μ is nonnegative.



Why Use It Instead of Wavelets?
• The coefficients measure relative measure instead of 

measure. All scales and locations are counted as 
“equal”.

• Allows another method to represent the signal, where 
one immediately detects large changes in relative 
volume. (Anomaly detection) 

• Multiple channels are immediately normalized if one 
looks just at the coefficients instead of absolute 
volume.

• One cannot easily synthesize using Haar wavelets and 
the “usual” expansion”. (How to keep the function 
positive?)



History in Analysis

This method and its “cousins” have been around for a 
while for analysis of various classes of weight 
functions on Euclidean space. See e.g. 
(P. Jones, J. Garnett) BMO from dyadic BMO. Pacific 
J. Math.  (1982)
One idea is to use the dyadic setting, analyze 

functions or weights, and average over translations of 
the dyadic grid.



Support of Measures and Information 
Dimension

An Example of use. Suppose a probability measure is obtained in the 
previous manner by using the same PDF for every coefficient.

Entropy:  Σ pklog2(pk)  =  - nh,
Here we sum over intervals of length 2-n. The (expectation of the) 

entropy, h, is derived from the PDF, and is independent of n (so set 
n = 1).

Theorem: The information dimension h
( = dimension of the support of the measure) is (a.s.) given by the 
expectation for n = 1. Here p1 = 1 +  a[0,1] and 
p2 = 1 - a[0,1] . (Just average over the PDF.)

Remark: Small h means the signal is more “bursty”. Can calculate the 
full “multifractal spectrum”.



Synthesis

Fix a Probability Density Function on 
[-1,+1]. Choose the coefficients aI independently 
from that PDF. In the following we show a 
simulated signal, followed by a color chart (using 
“Jet”) of the coefficients.

This allows one to simulate for purposes of 
training. Similar (but also different!) from other 
methods (e.g. Barral and Mandelbrot). They need 
to normalize measure “at every step”.







Synthesized signal

Here all the coefficients have been chosen from one 
PDF for the intervals in the “second half of the day”.



PDPM – An Example (scale 8)

• Function
f(x) = (π/2).sin(π.x) 

defined on [0,1]

• Legend
– True function 

(green)
– Approximation 

using PDPM 
(black)
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PDPM – An Example (scales 0 to 7)
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PDPM Synthesis/Visualization – Uniform
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PDPM Synthesis/Visualization – Bell
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Real Data  from Weather Event



Dataset I: Local Information

• Network measurements over the span of ~24 
hours; ~65k sources

• Overall ramping behavior
• Inherent bursty behavior revealed at select 

scales
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Note: Colors represents amount of function variation



Analysis of Another Data Set
• In the first analysis to follow we will simply use the 

actual volume. A data point will be the volume at times 
t, t -1, t -2, t -3 (for each source). We then examine the 
data using first PCA (“Data Set 2:  1 and 2 of 2”), then 
Diffusion geometry (“Data Set 2: Diffusion Map”).  Here 
there is no apparent advantage (over SVD) in using 
Diffusion Geometry.

• In the second analysis we instead take a data point to 
be the coefficients of the product expansion of the 
day’s volume (from each source), and display only the 
results from DG. Notice the excellent clustering that 
happened automatically (Data Set 2: PDPM + Diffusion 
Map”).



Dataset II: SVD (1 of 2)
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• Measurement data
– 182 network entities
– ~ 2 weeks of data @ 15 min intervals
– 1315 data points

• PCA analysis
– Window size: 1 hour
– Dimensions: 728 (reduced 2-dim. representation above)



Dataset II: SVD (2 of 2)
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• PCA analysis
– major discriminator is 

time of day
– minor discriminator is 

day of week

– Legend: morning, 
night, weekend



Dataset II: Diffusion Map
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 Time of day
 JET color map

 1 hr window



Dataset II: PDPM + Diffusion Map
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Thu

Fri

Wed

Tue

Sat/Sun/Mon

• Daily profile
– 182 antennas
– 14 days



Diffusion Geometry

The idea behind Diffusion Geometry is to put a 
new, nonlinearly defined  representation af
the data set. “Cartoon Version”:

Step 1. Embed the data set in ℝd. 
Step 2. Choose a value of σ to define a length 

scale. Build the data matrix 
M  =   (exp{ - |xi – xj|2/σ})

Step 3. Compute the Eigenvectors {Φk}.



DG Continued

4. Carefully choose a small number of 
eigenfunctions, e.g. Φ3 , Φ4 , Φ7 . The new 
data set representation is given by the image

xi → {Φ3(xi), Φ4(xi), Φ7(xi)}
5. Why do it? It could be helpful where PCA 

works poorly. It computes “local affinities” 
and builds coordinates from that information.



References

• For a tutorial see: Mauro Maggioni’s
Homepage. Click on “Diffusion Geometry”.

• Why can it work? See:
“Manifold parametrizations by eigenfunctions 

of the Laplacian and heat kernels”. (Joint with 
Mauro Maggioni and Raanan Schul)
PNAS, vol. 105 no. 6 (2008), pages 1803-1808 

(Plus full paper on Raanan Schul’s Homepage)

http://www.math.duke.edu/~mauro/�
http://www.pnas.org/cgi/content/abstract/0710175104v1�




Conformal Field Theory without CFT

An analogous object appears in CFT. The toy 
model:

For each interval I choose iid Gaussians, BI(t) 
~ N(o,t), i.e. variance = t. Use “Feynman-Kac”: 

μ =  ∏exp{BI(t) hI(x) –t/2}

=  exp{Σ (BI(t) hI(x) –t/2)}
If t < tcritical , μ is (a.s.) a nozero, finite Borel measure. 

(Appears in “SLE”.)



Two CFT References
1. arXiv:0912.3423 Title: Random Curves by Conformal Welding 

Authors: K. Astala, P. Jones, A. Kupiainen, E. Saksman
Comments: 5 pages 
Subjects: Complex Variables (math.CV); Mathematical Physics (math-

ph) 
2. arXiv:0909.1003
Title: Random Conformal Weldings
Authors: K. Astala, P. Jones, A. Kupiainen, E. Saksman
Comments: 36 pages, 2 figures 
Subjects: Complex Variables (math.CV); Mathematical Physics (math-
ph) 



Measures and Curves 

• Take a positive measure μ on the circle and 
normalize its mass to be 2π. Let Φ’ = μ. If μ 
puts positive mass on each open interval and 
has no Dirac masses, Φ is a homeo of the 
circle. 

• Amazing Fact: Under mild hypotheses, there is 
a curve corresponding to μ (the “welding 
curve”). An example is on the next page.



Jeff Brock’s 
Image of a 
QuasiFuchsian
Limit  Set



A Welding Curve (Circle Packing)
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